Proof-writing skills are important for all college-level math. But there’s a special relationship between proofs and discrete math. In the “Goals of a Discrete Mathematics Course” section in the preface to his textbook, Rosen puts *Mathematical Reasoning* first in the list. He writes:

Students must understand mathematical reasoning in order to read, comprehend, and construct mathematical arguments [proofs]. This text starts with a discussion of mathematical logic, which serves as the foundation for the subsequent discussions of methods of proof. Both the science and the art of constructing proofs are addressed.

Rosen Chapter 1 is “The Foundations: Logic and Proofs,” and that chapter ends with sections on “Introduction to Proofs” and “Proof Methods and Strategy.” A textbook that specifically covers proof techniques, Daniel J. Velleman’s How to Prove It, begins with chapters on these same topics, and includes chapters on logic and on mathematical induction which Rosen also covers. So it’s not surprising that many of the exercises in Rosen ask for proofs. Here is a process I use to get the most out of these exercises.